
How Long It Takes for an Ordinary Node

with an Ordinary ID to Output?

Laurent Feuilloley⋆

Institut de Recherche en Informatique Fondamentale (IRIF),

CNRS and University Paris Diderot,

France

Abstract. In the context of distributed synchronous computing, processors perform in rounds, and the time com-

plexity of a distributed algorithm is classically defined as the number of rounds before all computing nodes have

output. Hence, this complexity measure captures the running time of the slowest node(s). In this paper, we are

interested in the running time of the ordinary nodes, to be compared with the running time of the slowest nodes.

The node-averaged time-complexity of a distributed algorithm on a given instance is defined as the average, taken

over every node of the instance, of the number of rounds before that node output. We compare the node-averaged

time-complexity with the classical one in the standard LOCAL model for distributed network computing. We show

that there can be an exponential gap between the node-averaged time-complexity and the classical time-complexity,

as witnessed by, e.g., leader election. Our first main result is a positive one, stating that, in fact, the two time-

complexities behave the same for a large class of problems on very sparse graphs. In particular, we show that, for

LCL problems on cycles, the node-averaged time complexity is of the same order of magnitude as the “slowest

node” time-complexity. In addition, in the LOCAL model, the time-complexity is computed as a worst case over all

possible identity assignments to the nodes of the network. In this paper, we also investigate the ID-averaged time-

complexity, when the number of rounds is averaged over all possible identity assignments of size O(log n). Our

second main result is that the ID-averaged time-complexity is essentially the same as the expected time-complexity

of randomized algorithms (where the expectation is taken over all possible random bits used by the nodes, and the

number of rounds is measured for the worst-case identity assignment). Finally, we study the node-averaged ID-

averaged time-complexity. We show that 3-colouring the n-node ring requires Θ(log∗
n) rounds if the number of

rounds is averaged over the nodes, or if the number of rounds is averaged over the identity assignments. In contrast,

we show that 3-colouring the ring requires only O(1) rounds if the number of rounds is averaged over the nodes,

and over the identity assignments.

⋆ The author received additional support from ANR project DESCARTES, and Inria project GANG.

1 Introduction

The LOCAL model [22] is a standard model of distributed network computing. In this model, the network is

abstracted as a graph, and the nodes perform in rounds to solve some task. At each round, each node can send

messages to its neighbours in the graph, receive messages and perform some computation. The complexity

of an algorithm solving some task is measured by the number of rounds before the task is completed, which

usually depends on the size of the network, that is, its number of nodes.

A classic assumption in the LOCAL model is that the nodes know the size of the network a priori. As

a consequence, in many algorithms, each node can compute from the start how many rounds are needed

to solve the task, and stops after that number of rounds. There have been efforts to remove such a priori

knowledge of the parameters of the graph (e.g. the arboricity [3] and the maximum degree [19]). Quite

recently a general technique, called pruning algorithms, has been developed to remove the assumption that

nodes know the size n of the network [15]. In other words, [15] provides a method to transform a non-

uniform algorithm into a uniform algorithm. The basic idea is to guess the number of nodes and to apply a

non-uniform algorithm with this guess. The output can be incorrect, as the algorithm is only certified to be

correct when it is given the actual number of nodes in the graph. The technique consists in virtually removing

from the graph the nodes that have correct outputs, and to repeat the previous procedure with a new guess

that is twice as large as the previous guess. Eventually all nodes have an output after a certain number of

iterations, and the solution that is computed is correct. Note that with the resulting uniform algorithm some

nodes can output very quickly, and some others can output much later. So far, only the classic measure

of complexity, i.e. the time before all nodes stop and output, has been studied, even for such algorithms.

In other words, only the behaviour of the slowest node has been considered. In this paper, we introduce a

new measure of complexity, which is the average measure, in opposition to the usual measure which is a

worst-case measure. More precisely, we define the running time of a node as the number of rounds before

it outputs, and consider the average of the running times of the nodes. We argue that, when studying the

locality of problems and of algorithms, it is worth to also consider this measure. Indeed it describes the

typical local behaviour of the algorithm, that is, the behaviour of an ordinary node.

In some contexts partial solutions are useful. For example, consider the scenario in which two tasks are

to be performed one after the other. In such case, it may happen that, on some part of the graph a partial

solution for the first task is computed quickly. We can take advantage of this to start the second task in that

part of the network, while the other nodes are still working on the first task. Note that knowing if the first task

is finished can be impossible locally, and one has to design the second algorithms such it start at different

rounds on different nodes. Consider a second scenario in which a global operator has to take a decision based

on the outcome of a local algorithm. In that case, a partial solution may also be sufficient. For example the

operator can detect that the network is in a bad state, and start immediately a recovery procedure without

waiting for all nodes to finish. Such situations are a motivation for the study of graph property testing, where

a centralized algorithm probes the network on a sublinear number of nodes and take a decision based on this

partial knowledge. We refer to the survey on graph property testing [13] for more examples of applications.

When such partial solutions are useful, one would like to design algorithm that stop as soon as possible, and

the average of the running time of the nodes is then a measure one would like to minimize.

Another classical assumption in the LOCAL model is that the nodes are given distinct identifiers. These

identifiers (or IDs for short), are distinct binary strings on O(log n) bits, that is, distinct integers from a

polynomially large space. The usual way to measure the complexity of an algorithm is again to consider

its the worst-case behaviour, that is, the performance of the algorithm on the worst ID assignment. We

argue that the average performances over all ID assignments, is also worth considering. Indeed many lower

bounds are based on the fact that, as the identifiers can be viewed as set by an adversary, they do not really

1

help to break symmetry. For example, on a path, one may consider the identifier assignment 1, 2, ..., n,

and argue that if nodes only consider the relative ordering of the identifiers in their neighbourhoods, then

many nodes have the same view, and thus they cannot break symmetry. It is interesting to study if such

specific constructions are required, or if one can design lower bounds that are robust against arbitrary ID

assignment. We cannot expect that IDs are always set in a perfect way for the task we consider, but it may

seem excessive to consider that they are set in an adversarial way, which naturally leads to the question

of random assignments. We study the complexity of algorithms on random ID assignment, as the average

over all possible ID assignment of the running time of the slowest node. Finally, the typical behaviour of an

algorithm can arguably be the expected running time of an ordinary node on a random ID assignment. That

is, the standard complexity but averaged on both nodes and ID assignments.

For the sake of concreteness, here is an example of the type of questions tackled in this paper. Consider

the classic task of 3-colouring a ring of n nodes. It is known that this task requires Ω(log∗ n) rounds [16].

This bound also holds for randomized algorithms [20]. The question tackled in this paper are of the following

form: is it the case that a node typically outputs after a constant number of rounds, or is the Ω(log∗ n) lower

bound robust to this spatial averaging? And what about the complexity of the problem on a random ID

assignment?

Our results Our first result is that averaging on the nodes can have a dramatic effect on the time complexity

of solving a task in the LOCAL model. Indeed, for leader election on cycles, there is an exponential gap

between the node-averaged complexity and the classic complexity. That is the slowest node outputs after a

number of rounds that is exponentially larger than the time complexity of an ordinary node. This contrasts

with our next result, for very sparse graphs. We say that a graph is q-sparse, if every ball of radius r has

at most q.r nodes. For q-sparse graphs, we show that, for many classic tasks, the two measures are of the

same order of magnitude. More precisely for a class of tasks that generalizes the class of locally checkable

labellings (LCL for short) [21], we show the following lemma, that we call local average lemma. For a given

algorithm, either no node has a running time much larger than the average in its neighbourhood, or there

exists an algorithm that is strictly better, that is an algorithm that has smaller running time for every node

in every graph. As a consequence when proving lower bounds for these problems, one can use the fact that

there is no peak in the distribution of the running times of the nodes. Then, to show that the average running

time is large, it suffices to show that there is a large enough number of nodes that are far enough one from

the other and that have large running time . This local average lemma can be used to show, for example, that

for LCL problems on cycles, the landscape of complexities for an ordinary node and for the slowest node is

the same, that is, for every problem the complexity is either Θ(1), Θ(log∗ n) or Θ(n).

We then move on to averaging on the identifier assignments. That is, we consider the expected behaviour

of deterministic algorithms on random ID assignments. This topic happens to be related with the expected

complexity of randomized algorithms. We show that even though these two models have specific properties,

namely the independence of the random strings for the randomized algorithms, and the uniqueness of the

identifiers for random ID assignment, the complexities are essentially the same. It follows that the results

known for randomized algorithms can be translated to average over the identifiers.

Finally we prove that averaging on both nodes and IDs, can have an important effect on the complexity.

We take the example of 3-colouring an n-node cycle. From the previous results of the paper, and from

the literature, we know that this task has complexity Ω(log∗ n) for both the average on the nodes and the

average on the identifiers. Quite surprisingly, when averaging on both the nodes and the ID assignment, the

complexity becomes constant. In other words, deterministic and randomized complexity of ordinary nodes

are clearly separated. Such separation contrast with the situation when considering the classic measure,

2

as randomized constant-time algorithms for LCL, can be derandomized to get constant-time deterministic

algorithms [21].

Related works The LOCAL model was defined in [16], and a standard book on the topic is [22]. The problem

of leader election, studied in section 3, is a classic problem in distributed computing [2, 18].

Deterministic algorithms stopping after different number of rounds on different nodes have been studied

in contexts where the parameters of graphs, such as the degree or the number of vertices, are unknown.

Such algorithms are called uniform algorithm, because it is the same algorithms that is run on every graph,

independently of the parameters. A work that is particularly relevant to us is [15]. In this paper the authors

prove that for a wide class of problems, one can remove the assumption that the nodes know the size n of the

network. This is done by applying a general method to transform a non-uniform algorithm into a uniform

algorithm, without increasing of the asymptotic running time. In this framework, called pruning algorithms,

some nodes may stop very early and some may run for much longer time. Such algorithms justify the study

of the behaviour of an ordinary node and not only of the behaviour of the slowest node.

The local average lemma of section 4 applies to problems that are local in the sense that the nodes can

check in constant time if a given solution is correct. This is an extension of the well-studied notion of locally

checkable labelling (or LCL for short) [21], which is similar but requires in addition that the size of the

inputs and of the outputs are bounded. Also the set of correct labellings usually studied, e.g. in distributed

decision [9], including in LCL, do not depend on the identifiers of the graph, a restriction that is not needed

here.

Randomized algorithms that turn out to be equivalent to algorithms working on random ID assignment

form a well-studied subject, going back to the 80s with algorithms for maximal independent sets [1, 17].

Recently, improvements on classic problems have been obtained [12, 14] along with an exponential separa-

tion between randomized and deterministic complexity [6] (see also [4]). In [12], the author, by advocating

the study of the so-called local complexity for a randomized algorithms, conveys the same message as the

current paper: the behaviour of a typical node is worth considering, even if some nodes of the graph have

much worst behaviour.

In this paper, we consider two relaxations of the measure of complexity, from worst-case to average, on

the nodes and on the IDs. An aspect that we do not consider is the structure of the graph. We refer to [11]

and references therein, for the topic of local algorithms on random graphs.

Finally, part of the results of this paper appeared in a brief announcement at PODC 2015 by the current

author [8].

2 Model and definitions

The graph considered in this paper are simple connected graphs, and throughout the text n will denote the

number of nodes in the graph. The distance between two nodes is the number of edges on a shortest path

between these nodes, that is, the hop-distance. The k-neighbourhood of a node v in a graph G, is the graph

induced by the nodes at distance at most k from v. Every node is given a distinct identifier on O(log n) bits,

or equivalently an integer from a polynomially large range.

The algorithms studied in this paper can be defined in two ways. In both definitions, the nodes are

synchronized and work in rounds, and for both the computational power of the nodes is unbounded. In the

first definition, at each round, every node can exchange messages with its neighbours, and perform some

computation. There is no bound on the size of the messages. A given node chooses an output after some

number of rounds, and different nodes can stop at different rounds. After the output, a node can continue

to transmit messages and perform computations, but it cannot change its output. In other words, the nodes

3

do not go to a sleep mode once they have output, but the output is irrevocable. In the second definition,

each node starts with the information of its 0-neighbourhood, and increases the size of this view at each

round. That is, after k rounds, it knows its k-neighbourhood, that is it knows the structure of the graph in

this neighbourhood, along with the identifiers and the inputs of the nodes. At some round, it chooses an

output and stops. These two definitions are equivalent. On one hand, if we start from the first definition, we

can assume that each round every node sends to its neighbours all the information it has about the graph

(remember that the message size is unbounded)1 . Then after k rounds, a node has gathered the information

about its k-neighbourhood. On the other hand, given a k-neighbourhood, a node can simulate the run of

the other nodes, and compute the messages that it would receive if the nodes were using a message-passing

algorithm.

The running time of a node is the number of rounds before it outputs. With the second definition, the

running time of the algorithm can be described in a more combinatorial way: it is the minimum k such

that the node can choose an output with a view of radius k. Given a graph G, an identifier assignment I
(from the set of legal ID assignments that we denote ID), an algorithm A, and a node v, we denote by

rG,I,A(v) the running time of node v in this context. When the context is clear, we simply use r(v). We now

define the different measures of complexity used in this paper. Given a graph G, and an algorithm A, we

call complexity of the slowest node complexity or classical complexity, and complexity of an ordinary node

or node-averaged complexity respectively, the following quantities:

max
I∈ID

max
v∈G

rG,I,A(v) and max
I∈ID

1

n

∑

v∈G

rG,I,A(v)

In the second part of this paper, we consider the average on the identifier assignments and the average

on both the identifiers and the nodes, that is, the following measures:

1

|ID|

∑

I∈ID

(

max
v∈G

rG,I,A(v)

)

and
1

|ID|

∑

I∈ID

(

1

n

∑

v∈G

rG,I,A(v)

)

The tasks or problems that we want to solve in a distributed manner, are formalized with the notion of

language. A language L is a set of configurations of the form (G, I, x, y), where G is a graph, I an identifier

assignment, and x and y are functions from the nodes of the graph to a set of labels. We are interested in

constructing these languages, which means that given a graph G, an ID assignment I and inputs given by

the function x, we want to compute locally a function y such that (G, I, x, y) is in the language L. The

languages considered are such that for every (G, I, x), there exists a legal output y. Note that usually, the

identifier assignment is not part of the language [9, 10, 21], but our results hold for this more general version.

In section 3, we use the most general option regarding the knowledge of n by the nodes, we assume

such knowledge for lower bounds, whereas for upper bounds we do not require it. For section 4, we assume

that nodes do not have the knowledge of n. For the randomized part we assume this knowledge for the sake

of simplicity, and refer the reader to subsection 4.4 of [15] for a technique to remove such assumption for

randomized algorithm.

Throughout the paper, the expression with high probability means with probability at least 1− 1/n.

1 There is a subtlety here, which is that after k rounds in the message-passing algorithm a node cannot know the edges that are

between nodes at distance exactly k from it. For the sake of simplicity, we consider the proper k-neighbourhoods, as it does not

affect the asymptotic of the algorithms.

4

3 Exponential gap for a global language

The complexity of an ordinary node is bounded by the complexity of the slowest node by definition. In this

section, we show that the gap between these two quantities can be exponential.

Theorem 1 The gap between the averaged-node complexity and the classical complexity can be exponen-

tial.

We illustrate this phenomenon on the classic problem of leader election. The language of leader election

is the set of graphs, with no inputs and binary outputs, such that exactly one node has label 1, and the others

have label 0. It does not depend on the ID assignment. It is folklore that this problem has classic complexity

Θ(n).

Proposition 1 (Folklore). Leader election on an n-node ring requires Θ(n) rounds (for the slowest node).

We prove this statement for completeness. The complexity of leader election in various models is dis-

cussed in [2, 18].

Proof. Let A be an algorithm for leader election, which has access to the size of the graph. Suppose that the

slowest node complexity of A is c(n) ∈ o(n). Let n0 be a large enough constant such that 2c(n0)+1 < n0/2.

Consider a ring R1 of length n0. After running the algorithm A on R1, a node v1 is elected to be the leader.

This node v1 outputs 1, after at most c(n0) steps. That is, v1 outputs based on a view that contains at most

2c(n0) + 1 nodes. Because of the definition of n0, this view contains less than n0/2 nodes. Let I1 be the

set of identifiers in this view. Now consider another ring R2 of length n0, whose set of identifiers does not

contain any of the IDs of I1. Again, a node v2 is designated as the leader, and its view contains less than

n0/2 nodes. Now consider the ring made by concatenating the two views, and adding dummy nodes with

fresh identifiers, to make sure that the ring has size n0. Because the identifiers are all distinct, this is a proper

instance. Then, as v1 and v2 have the same view as in R1 and R2 respectively, with the same graph size n0,

they output the same as in R1 and R2. That is, they both output 1, and thus produce a configuration that is

not in the language, which a contradiction. ⊓⊔

Proposition 2. The complexity of an ordinary node for leader election on an n-node ring is O(log n).

Proof. Consider the following algorithm. Each node increases its radius until one of the two following

situation occurs. First, if it detects an ID that is larger than its own, then it outputs 0. Second, if it can see

the whole ring and that no ID is larger than its own, then it outputs 1. It is easy to see that this algorithm is

correct as only the node with maximum ID can output 1. Note that this algorithm is order-invariant in the

sense of [21], i.e. the algorithm does not take into account the identifiers themselves, but only their relative

ordering in its view. In particular, the algorithm does not require the knowledge of n. We show that the

averaged-node complexity of this algorithm is logarithmic in n.

Let us first make an observation. Consider the nodes with the k largest identifiers, and mark them. The

nodes that are not marked form k paths, some of them possibly empty. A key property is that the behaviour

of the algorithm on one path is independent of the other paths. More precisely, we claim that on a given path

the algorithm will have the same behaviour whatever the sizes and the identifier distributions of the other

paths are. Fix a path, and a node v, in this path. By definition, v has an identifier that is smaller than the ones

of the two marked nodes at the endpoints of the path. Therefore, it stops either before, or just when reaching

one of the marked nodes, and it outputs 0. As a consequence it will never get to know the rest of the cycle.

This simple observation implies that we can study the behaviour of the algorithm on each path separately.

5

Let p be integer, and let us consider a path of length p with two additional marked nodes at each endpoint. In

order to study the behaviour of the algorithm on this path, it is sufficient to consider all the relative ordering

of identifiers on this path, because it is an order-invariant algorithm. Marked nodes can be replaced by nodes

with IDs larger than every ID in the path. Let a(p) be the maximum over all these identifier assignments of

the sum of the running time of the nodes. We claim that this function obeys the following recursion formula:

a(p) = max
1≤k≤⌈p/2⌉

{k + a(k − 1) + a(p − k)} .

Consider the node v with the largest identifier in the path. It must reach one of the endpoints to stop. Then if

we mark this node, the behaviour of the algorithm on the two subpath is independent of the context, and the

maximum sums of running times in each path is a(p1) and a(p2) for the first subpath of length p1 and the

second of length p2 respectively. Then the only parameter is the distance k from v to the closest endpoint.

Given such an integer k, a(p) is then equal to k + a(k − 1) + a(p − k). One can then check by induction

that this maximum is always met for the value k = ⌈p/2⌉. Then an alternative formula is:

a(p) =
⌈p

2

⌉

+ a
(⌈p

2

⌉)

+ a
(⌈p

2

⌉

− 1
)

The sequence a(n), defined by the induction formula above, along with initial values a(0) = 0 and a(1) = 1,

is known to be in θ(n log n). For references and more information about this sequence, see [25]. Conse-

quently, the sum of the running times of the nodes is equal to the sum of the running time of the leader,

which is n/2, and of a(n − 1). This is because, we can mark the node that has the largest ID, and consider

the rest of graph as a path. Thereafter, the complexity of an ordinary node is logarithmic in n. ⊓⊔

Note that analysis of the same flavour already exist in the literature, see for example [24] p.125. Theorem

1 follows from propositions 1 and 2.

4 Local average lemma and application

This section is devoted to proving that, for local languages on very sparse graphs, the complexity of an

ordinary node is basically the same as the one of the slowest node. This proof is based on a local average

lemma. Given a graph and an algorithm, let us define informally a peak, as a node with high running time,

whose neighbours at some distance have much smaller running times in average. The lemma states that, for

local languages, and for algorithm that are somehow optimal, there is no such peak.

In order to give an intuition of this lemma, let us use the example of the 3-colouring a cycle. Consider

an algorithm for the problem, and three adjacent nodes u, v and w, in this order, in a cycle. We claim that if

r(v) > max(r(u), r(w))+1, then the algorithm can be speeded up. Indeed after max(r(u), r(w))+1 steps,

v can simulate the computation of u and w, deduce the colours they output, and output a non-conflicting

colour. As a consequence if one wants to prove a lower bound on the average of the running times, one can

assume that, for every node, at least one of its neighbours has a similar running time, namely at least its

running time minus one.

In this section the algorithm do not have the knowledge of n. In order to state the lemma we need to

introduce a few notions.

Class LCL* We consider a large class of distributed problems that we call LCL*, which includes the well-

known class of LCL problems [21], and the more general class LD [10]. A language L is in LCL*, if there

exists a constant-time verification algorithm. That is, an algorithm V performing in a constant number of

6

rounds, with binary output, accept or reject, such that for every configuration (G, I, x, y), V accepts at every

node, if and only the graph is in the language L. The running time of V is called the verification radius. No

bound on the size of the inputs and output is necessary, and the language can depend on the identifiers.

q-sparse graphs A graph is q-sparse if any ball of radius r contains at most qr nodes. For example a cycle

is 3-sparse.

Minimal algorithms The lemma has the following shape: given a node v whose running time is r, the nodes

of its neighbourhood have running times whose average is roughly r. This type of statement cannot hold

in general as we could artificially increase the radius of a node by modifying the algorithm. But as we are

interested in lower bounds for the node-averaged complexity, we can consider algorithms that are in some

sense minimal. More precisely, let A and A′ be two distributed algorithms for some language L. We say that

A is smaller than A′, if on every graph, every ID assignment and inputs, and on every node, the running time

of A is at most the running time of A′. For lower bounds on the node-averaged complexity, it is sufficient

to study algorithms that are minimal for this ordering. Indeed, if an algorithm that is not minimal has low

complexity, then there exists a minimal algorithms that has at most this complexity.

Lemma 1 (Local average lemma). Let L be a language in LCL* with verification radius t, and A be a

minimal algorithm for L. There exists two positive constants α and β, such that on any q-sparse graph, ID

assignment, inputs, and node v, the average of the running times of the nodes at distance at most r(v)/2
from v, is at least α.r(v) − β.

Let us denote by B(v, k,G, I, x) the subgraph of G, with identifiers I , and inputs x, induced by the

nodes at distance at most k from a node v. Likewise, given two integers k1 < k2, let S(v, k1, k2, G, I, x) be

the induced graphs with IDs and inputs, induced by the set of nodes whose distance to v is at least k1 and at

most k2. When the context is unambiguous, we omit the information G, I and x.

Let L be a language of LCL*. There exists a verification algorithm V , such that a configuration (G, I, x, y)
is in the language L if and only if V accepts at all node. Let t be the verification radius of V . Let L, A, G,

I , v and x be respectively, a language, a minimal algorithm, a graph and an ID assignment, a node and an

input assignment as in the lemma.

In order to prove the lemma, we will first prove the following claim.

Claim. For every integer k:

r(v) ≤ 2k + 2t+ max
u∈S(v,k,k+2t)

r(u)

Proof. Suppose the inequality does not hold for some k. Let us use the following notations:

M = max
u∈S(v,k,k+2t,G,I,x)

r(u) and B = B(v, k + 2t+M,G, I, x).

As in the example of 3-colouring at the beginning of this section, we define a new algorithm A′, designed

to be smaller than A. On a node w of a graph G′, with ID assignment I ′, and inputs x′, the behaviour of A′

differs from the one of A only if the following conditions are fulfilled:

(1) The running time of w, rG′,I′,A(w), is at least 2k + 2t+M ;

(2) The node w is at distance at most k from a node whose neighbourhood at distance k+2t+M is exactly

B(v, k + 2t+M,G, I, x).

7

b

B

G

M

2t
k v b b

B

G
′

w

2k + 2t
+M

Fig. 1. This figure illustrates the definition of the algorithm A
′ in the proof of lemma 1. On the left is the original graph G with node

v, along with the ball B around it. The behaviour algorithm A
′ differs from the algorithm A only if it is in the situation of the node w

on the right: it has running time at least 2k+2t+M , and it is at distance at most k from a node whose (k+2t+M)-neighbourhood

is exactly B.

See figure 1. When the two conditions are fulfilled, let wG be the node of G, whose position in B, ID,

and input, are the same as the ones of w in G′. In that case, the algorithm A′ stops at round 2k + 2t +M ,

and outputs the same label as A does on wG, in (G, I, x).

The algorithm A′ is correct on G by construction, as it has exactly the same outputs as A. We prove

that A′ is correct on any graph. Consider the behaviour of the verification algorithm V , on a node z of a

graph G′, with IDs I ′ after the run of A′. This node may reject, only if it can detect a difference between

the outputs of A and A′. That is, only if A′ has an output that is different from the output of A, on a node

y of the t-neighbourhood of z. Because of the condition (2) in the definition of A′, y is at distance at most

k from a node v′ whose neighbourhood at distance k + 2t +M is exactly B. Then z is at distance at most

t+ k from this node v′. It is then sufficient to show that the algorithm A′ has correct outputs on the ball that

is centred in v′ and has radius k + 2t, as the whole view of V on z is contained in this ball.

First note that, the nodes at distance at most k from v′ in G′, have the same output with A′, as the

nodes at distance at most k from v in G with A. This is by definition A′. Second, remember that M =
maxu∈S(v,k,k+2t,G,I) r(u). As a consequence, in G, the nodes of S(v, k, k + 2t,G, I) stop before they see

nodes outside of B. The same holds in G′: as the (k + 2t +M)-neighbourhood of v′ is also B, the nodes

of S(v′, k, k + 2t,G′, I ′) have the same behaviour as is in the previous case, that is, they stop before they

discover that they are not in G. Therefore, the nodes of S(v′, k, k + 2t,G′, I ′) output as if they were in

S(v, k, k + 2t,G, I).2 Then A′ has the same outputs as A, and as A is correct, A′ is correct.

The algorithm A′ is strictly smaller that A, indeed no running time has been increased, and the running

time of v in G has been reduced to 2k + 2t+M . Consequently A is not minimal, which is a contradiction.

⊓⊔

The final step of the proof lemma 1, requires some computations, and is given in appendix A. We give

an intuition of this proof, considering a simplified version of the inequality of claim 4. Suppose we have the

following inequality: r(v) ≤ maxSk
r(u) where Sk is the set of nodes at distance exactly k. The quantity

maxSk
r(u) is upper bounded by

∑

Sk
r(u). Then, summing both terms of the inequality, for k ranging

2 Remember that the nodes do not have the knowledge of the size of the network, thus they have exactly the same information in

G and G
′.

8

from 1 to r(v), one gets r(v)2 ≤
∑

S r(u), where S is the ball of radius r(v), without v. Now because

of q-sparsity, there are at most qr(v) nodes in S, and then
∑

S r(u) ≤ qaSr(v), where aS is the average

running time in S. Then r(v) ≤ q.aS .

4.1 Applications

Thanks to the lemma, establishing a lower bound for node-averaged complexity of languages in LCL* for

very sparse graphs, boils down to show a simpler fact. It is sufficient to prove that a constant fraction of the

nodes are close enough to nodes with running times similar to the running time of the slowest node. We

illustrate this type of proof with LCL problems on cycles. It is known that for such problems, the slowest

node complexity can only take three forms: O(1), Θ(log∗ n) or Θ(n). See for example [5] for a recent

presentation of this classification.3 We prove that the landscape is the same for ordinary nodes.

Theorem 2 For LCL on cycles, the node-averaged complexity has the same asymptotic classification as the

slowest node complexity.

Proof. Remember that the slowest node complexity is an upper bound on the average node complexity.

Thereafter, it is sufficient to only prove the two lower bounds: Ω(log∗ n) and Ω(n).
Let us first focus on the case Θ(n). In this case, there exists a constant γ, such that on every cycle on

n nodes, for large enough n, at least one node v has a running time at least γn. As we consider a lower

bound, we can assume that the algorithm is minimal. As lemma 1 applies, the average complexity in the

(γn/2)-neighbourhood of v is at least αγn − β, where α and β are constants. Thereafter, the sum of the

running time, in the (γn/2)-neighbourhood of v is bounded from below by αγ2n2 − βγn (or n2). Hence

the average complexity for the whole cycle is in Ω(n).
Now let us now consider the case of classical complexity Θ(log∗ n). Consider any minimal algorithm

A for the language L we consider. Again, let γ be a constant, such that the slowest node complexity is at

least γ log∗ n, for large enough n. There exists a ring R1 on n nodes, such that a node v1 has running time

r1 ≥ γ log∗(n). Then let H1 be the graph that is composed of only the r1-neighbourhood of v1, and let I1
be the set of identifiers of this segment. Now consider another ring R2 on n nodes, with no identifiers from

I1, such that there exists a node v2 with running time r2 ≥ γ log∗(n). Let H2 be H1 concatenated with the

r1-neighbourhood of v1. Note that because no identifier from I1 is present in R2, H2 has distinct identifiers.

This operation can be repeated, until Hk has more than n/2 nodes. Let H be Hk, completed in an arbitrary

way to get a full cycle of size n with distinct identifiers.

Note that as we performed the operation at most a linear number of times, the fact of removing some

identifiers at each step is harmless as the identifier space is supposed to be polynomially large. Also note

that the Θ(log∗ n) lower bound for the classical complexity is not affected by the constraints we add on the

identifier space. This is because the lower bounds proofs do not rely on the particular shape of this space,

which can even be assumed to be {1...n}[16].

We claim that on this cycle H with this ID assignment, the average node complexity is δ log∗(n) for

some constant δ. Indeed the nodes vi, for i ranging from 1 to k, have the same neighbourhood as in Ri

respectively, thus have running times ri respectively. Then using lemma 1 we get for every i the nodes at

distance at most ri/2 from vi have running time at least αri − β. And by construction there is a constant

fraction of the nodes of H that are in this case. As for every i, ri ≥ γ log∗(n), the node-averaged complexity

is in Ω(log∗ n). ⊓⊔

3 Even if not stated explicitly in [5], this classification also holds in the context where no knowledge of n is assumed. This is

because the Θ(log∗
n) bound relies on the construction of a maximal independent set, and that MIS is a problem for which the

construction of [15] works.

9

This “extract and glue” technique works on other class of graphs, and similar bounds can thus be

achieved. Nevertheless it is not true that, for any LCL problem and any graph class, the classic complex-

ity is the same as the node-averaged complexity, as the following proposition shows.

Proposition 3. There exists a graph class C for which 3-colouring has slowest node complexity Ω(log∗ n)
but node-averaged complexity in O(1).

Proof. Consider first the following construction. Start with a path of even length k, and index the nodes

along the path from v1 to vk. Create three new nodes and link them to the node vk. Now for the nodes vi
with 1 < i < k, if the index i is even, then add a node v′i and the edge (vi, v

′
i). We call this construction a

short leg. If the index i is odd, add two nodes v′i and v′′i , and two edges (vi, v
′
i) and (v′i, v

′′
i). This is a long

leg. For both construction, the node vi is called the basis of the leg. Let us call such a graph an even-odd

caterpillar. Now the graphs of C are the ones that can be constructed the following way: take an even-odd

caterpillar based on a path of length k, and a cycle of length α log∗ k (where α is a large enough constant),

and add an edge between an arbitrary node of the cycle and v1. See figure 2.

Every algorithm must colour the α log∗ k cycle, and as the size of the graph is linear in k, the identifiers

space is polynomial in k. Then Linial’s lower bound applies on the cycle, and the slowest node complexity

is Ω(log∗ k).

Let us now show that there exists an algorithm with constant node-averaged complexity for 3-colouring

in this graph class. Every node first gathers its 3-hop neighbourhood. From this view it can deduce its

position in the graph, and its behaviour for the following steps. More precisely, for every node v:

– if all the (direct) neighbours of v have degree two, then it is a node of the cycle, then it runs the Cole-

Vishkin procedure for 3-colouring a cycle [7]. It does not take into account the rest of the graph;

– if it is the basis of a short leg, or the middle of a long leg, then it takes colour 1;

– if it is the basis of a long leg, or has degree 1, then it takes colour 2;

– if it has degree four, then it is vk and it takes colour 1;

– if it has degree two and both its neighbours have degree three, then it is v1, and it waits until both its

neighbours have output, and it outputs a non-conflicting colour.

See figure 2.

Fig. 2. The figure illustrates proof of proposition 3. It takes O(log∗
n) rounds to 3-colour the cycle on the left, but it take constant

time to colour the even-odd caterpillar on the right, as a 2-colouring is hard-coded in the structure of the graph. In this picture,

colour 1 is blue, colour 2 is red, and colour 3 is yellow.

10

This algorithm uses at most log∗ n rounds on the cycle and v1, and constant time in the even-odd cater-

pillar. As the cyclic part has negligible size, the average node complexity is constant. ⊓⊔

5 Random ID assignments and randomized algorithms

We move on to the second topic of this paper, where the randomized aspects are considered. The standard

definition of the complexity in the LOCAL model not only considers the slowest node, but also the worst-

case distribution of the identifiers. In this section we investigate the impact of replacing this measure by the

running time of the slowest node, on a random ID assignments. In other words, given a graph, we consider

the average of the slowest-node running time over all possible ID assignments.

The main result is the equivalence between such measure, and the complexity of randomized algorithms.

Here, the complexity of a randomized algorithm is the expectancy of the number of rounds before every

node finishes. Note that the two concepts have similar flavour, but are distinct On one hand, the random

inputs of a randomized algorithm are independent, while in a random ID assignment, the identifiers are not

independent. On the other hand, the IDs are distinct, while the random inputs can be equal. On a high level,

the equivalence is similar to Yao’s principle [26], that relates the performance of a randomized algorithm

on a worst-case instance, and the complexity of a deterministic algorithm on a random instance. Also note

that in the literature, the usual complexity of randomized algorithms is not the one we consider, but the time

needed to output a correct solution with high probability. That is, Monte-Carlo algorithms are considered

instead of Las Vegas algorithms. We discuss briefly this point at the end of the section.

For the following theorem, randomized algorithms are given random strings of size O(log n), and not

infinite such strings. This hypothesis is not excessive as most algorithm use a small amount of randomness.

For example the celebrated MIS algorithm of [17] for bounded degree graphs, can be described as using

random strings of size bounded by O(log n).

Theorem 3 Given a problem, the expected slowest-node complexity of randomized algorithms, is equal to

the expected deterministic slowest-node complexity on identifier assignment taken uniformly at random.

Proof. It is part of the folklore that randomized algorithms do not need identifiers: they can generate such

IDs with high probability by taking a integer in a cubic range uniformly at random. Here a probability of

success equal to 1− 1/n would be slightly too weak, so we make it 1− 1/n2.

Lemma 2. If n numbers are taken independently uniformly at random between 1 and n4, these numbers are

pairwise distinct with probability 1− 1/n2.

Proof. The probability of two fixed numbers being equal is 1/n4. Then by union bound, the probability that

a pair of numbers have the same value is bounded by the number of such pairs n(n− 1)/2 multiplied by the

former probability. Then the probability of collision is bounded by 1/n2, thus with probability 1− 1/n2 the

numbers are pairwise distinct. ⊓⊔

Remember that a randomized algorithm can be formalized as a deterministic algorithm having an aux-

iliary input, this input being a large enough random number. We consider an algorithm A with an auxiliary

input that can either be the ID or the random bits, and show that with high probability the behaviour is the

same.

As stated in proposition 2, taking independently and uniformly at random n numbers from [n4] provides

a list of distinct numbers with probability 1−1/n2. Also when this sampling succeeds, that is when the num-

bers are distinct, the outcome is uniform among all distinct identifiers assignments, because the identifiers

are taken independently uniformly at random.

11

Let D be a deterministic algorithm, and let c be its average slowest-node complexity on identifier as-

signments taken uniformly at random. Let R be a randomized algorithm, that first picks random numbers

in [n4], and then runs D, until D stops or until the node basically sees whole graph, and in the last case it

outputs a colour such that the colouring is correct. The algorithm R has probability at least (1 − 1/n2) to

stop with D that has expected runtime c, and probability at most 1/n2 to stop after at most n rounds. Then

the expected runtime is upper bounded by (1 − 1/n2)c + 1/n2.n which asymptotically is c. Conversely,

suppose that a randomized algorithm has expected complexity c. We claim that using the same algorithm

using the identifier as random strings provides a deterministic algorithm with average complexity c. Suppose

it is not the case. Then, the randomized algorithm must have complexity c when the numbers are distinct,

and c′ when they are non-distinct. The expected runtime is (1 − 1/n2)c + 1/n2c′, which is asymptotically

c as c′ can be assumed to be at most n, which is a contradiction.

Thus theorem 3 holds. ⊓⊔

A similar result can be obtained for the more classic context of Monte-Carlo algorithm. That is, when

one considers the time before the nodes have stopped and output a proper solution with high probability,

then the complexity of randomized algorithms and of deterministic algorithm on random identifiers are the

same.

A related topic is to minimize the amount of randomness used by randomized algorithms. The amount of

random bits necessary to perform a computation is usually not considered as a resource to be minimized in

the LOCAL model. Whereas it is considered in centralized computing, see [23] for a precise example. Here,

it is possible to do a small step in that direction, if we consider algorithms and languages that are local. In

this case, it is not necessary to have all IDs of the graph that are different one from the other. In a local

algorithm, the nodes see only a small neighbourhood of the graph, and thus only such neighbourhoods need

to have distinct IDs. This is one of the ingredient of recent breakthroughs in the field, such as the speed-up

theorem from [6] (see theorem 6 in the paper).

Let s be the maximum number of nodes that a node can see when it runs the local algorithm at hand.

Then the following holds:

Proposition 4. Taking uniformly at random numbers from
[

n2s2
]

is sufficient to have locally distinct iden-

tifiers with high probability.

Proof. Consider a ball of size s. The probability that two nodes of this ball have the same identifier is upper

bounded by s2/(n2s2) = 1/n2. Then by union bound on all the centres of balls, one gets a probability of

collision of 1/n. ⊓⊔

5.1 Node-averaged randomized complexity

After considering an average on the nodes, and on the identifiers assignment separately, we consider both

averages together. That is we consider the behaviour of an ordinary node on an ordinary ID assignment. In

the light of the previous subsection, this is equivalent to consider node-averaged complexity of randomized

algorithms. This new measure can be unexpectedly low, as we illustrate on the example 3-colouring.

Theorem 2 implies that the node-averaged complexity of 3-colouring of a cycle is Θ(log∗ n). It is also

known that the randomized complexity is Θ(log∗ n), if one considers Monte-Carlo algorithms with prob-

ability of success greater than one half [20]. Then the expected running time is also in Θ(log∗ n). This

contrasts with the following result.

Proposition 5. For 3-colouring on a ring, the expected complexity of an ordinary node is constant.

12

Proof. The algorithm we consider, consists in repeating a simple procedure. At each round every node that

has not yet an output, take a colour at random among the colours that are still available. That is, it takes a

colour that as not yet been output by a neighbour. Note that this is always possible, as the nodes have degree

two, and choose among three colours. After the sampling, if there is no conflict, then the node outputs the

colour. If there is a conflict, then the colour is forgotten, and the node continue to the next round. If the node

outputs a colour, we say that it succeeds, otherwise it fails.

Given an arbitrary partial colouring obtained after some rounds, the probability that a fixed node suc-

ceeds is lower bounded by α = 5/12. This number is obtained by case analysis. It corresponds to the case

where, the current node has both neighbours without outputs, but both nodes at distance two with outputs,

and these outputs are different. Let β = 1− α. Also, let Vk be the number of nodes that have not yet output

after round k, with V0 = n. The following holds by linearity of the expectation.

E(|Vk| | |Vk−1|) =
∑

v∈Vk−1

P(v does not stop at round k) ≤ β|Vk−1|

We can apply the previous inequality repeatedly, and get: E(Vk) ≤ βkn. The number of nodes that stop

at round k is precisely Vk − Vk−1, then the sum of the running times is:

∑

k

k(Vk − Vk−1) ≤
∑

k

kVk.

The expected sum of the running time is then upper bounded by
∑

k kβ
kn. Then the node-averaged expected

sum is
∑

k kβ
k. As β < 1,

∑

k kβ
k is a constant, thus the expected complexity of an ordinary node in a

random ID assignment is constant. ⊓⊔

Note that having a constant complexity when looking at a more local measure, is not particular to this

example. For example in [12], the author designs an algorithm for maximal independent set that terminates

after O(log deg(v)+ log(1/ǫ)) rounds, with probability at least 1− ǫ, where deg(v) is the degree of node v.

6 Conclusion and open questions

This paper introduces the notions of node-averaged and ID-averaged complexities. We think these measures

are meaningful when analysing algorithm that do not have the knowledge of the size of the network, or in

contexts where partial solutions are useful. Also, very local complexities, as the one of subsection 5.1 and

the one advocated in [12], are natural measures that one would like to understand better. Our results illustrate

that these complexities can have interesting behaviours. The natural next step is to generalize these results,

to more problems, and larger graph classes.

7 Acknowledgements

I would like to thank Juho Hirvonen, Tuomo Lempiinen and Jukka Suomela for fruitful discussions, and

Pierre Fraigniaud for both discussions, and help for the writing. I thank the reviewers for helpful comments,

and Mohsen Ghaffari for pointing out that randomized node-averaged complexity could be considered.

13

Bibliography

[1] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm for the

maximal independent set problem. Journal of algorithms, 7(4):567–583, 1986.

[2] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations, and Advanced

Topics. Wiley, 2004.

[3] Leonid Barenboim and Michael Elkin. Sublogarithmic distributed MIS algorithm for sparse

graphs using nash-williams decomposition. Distributed Computing, 22(5-6):363–379, 2010.

doi:10.1007/s00446-009-0088-2.

[4] Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel Rybicki, Jukka

Suomela, and Jara Uitto. A lower bound for the distributed lovász local lemma. In Proceedings of the

48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA,

June 18-21, 2016, pages 479–488, 2016. doi:10.1145/2897518.2897570.

[5] Sebastian Brandt, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, Patric R. J. Östergård,

Christopher Purcell, Joel Rybicki, Jukka Suomela, and Przemyslaw Uznanski. LCL problems on grids.

CoRR, abs/1702.05456, 2017. arxiv:1702.05456.

[6] Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential separation between randomized and

deterministic complexity in the LOCAL model. In IEEE 57th Annual Symposium on Foundations of

Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA,

pages 615–624, 2016. doi:10.1109/FOCS.2016.72.

[7] Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to optimal parallel list

ranking. Information and Control, 70(1):32–53, 1986. doi:10.1016/S0019-9958(86)80023-7.

[8] Laurent Feuilloley. Brief announcement: Average complexity for the LOCAL model. In Proceedings

of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San

Sebastián, Spain, July 21 - 23, 2015, pages 335–337, 2015. doi:10.1145/2767386.2767446.

[9] Laurent Feuilloley and Pierre Fraigniaud. Survey of distributed decision. Bulletin of the EATCS, 119,

2016. EATCS:The Distributed Computing Column by Stefan Schmid.

[10] Pierre Fraigniaud, Amos Korman, and David Peleg. Towards a complexity theory for local distributed

computing. J. ACM, 60(5):35, 2013. doi:10.1145/2499228.

[11] David Gamarnik and Madhu Sudan. Limits of local algorithms over sparse random graphs. In Inno-

vations in Theoretical Computer Science, ITCS’14, Princeton, NJ, USA, January 12-14, 2014, pages

369–376, 2014. doi:10.1145/2554797.2554831.

[12] Mohsen Ghaffari. An improved distributed algorithm for maximal independent set. In Proceedings of

the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington,

VA, USA, January 10-12, 2016, pages 270–277, 2016. doi:10.1137/1.9781611974331.ch20.

[13] Oded Goldreich. Introduction to testing graph properties. In Property Testing - Current Research and

Surveys, pages 105–141, 2010. doi:10.1007/978-3-642-16367-8 7.

[14] David G. Harris, Johannes Schneider, and Hsin-Hao Su. Distributed (∆+1)-coloring in sublogarithmic

rounds. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC

2016, Cambridge, MA, USA, June 18-21, 2016, pages 465–478, 2016. doi:10.1145/2897518.2897533.

[15] Amos Korman, Jean-Sébastien Sereni, and Laurent Viennot. Toward more localized local algorithms:

removing assumptions concerning global knowledge. Distributed Computing, 26(5-6):289–308, 2013.

doi:10.1007/s00446-012-0174-8.

[16] Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–201, 1992.

http://dx.doi.org/10.1007/s00446-009-0088-2
http://dx.doi.org/10.1145/2897518.2897570
http://arxiv.org/abs/1702.05456
http://dx.doi.org/10.1109/FOCS.2016.72
http://dx.doi.org/10.1016/S0019-9958(86)80023-7
http://dx.doi.org/10.1145/2767386.2767446
http://bulletin.eatcs.org/index.php/beatcs/article/view/411
http://dx.doi.org/10.1145/2499228
http://dx.doi.org/10.1145/2554797.2554831
http://dx.doi.org/10.1137/1.9781611974331.ch20
http://dx.doi.org/10.1007/978-3-642-16367-8_7
http://dx.doi.org/10.1145/2897518.2897533
http://dx.doi.org/10.1007/s00446-012-0174-8

[17] Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput.,

15(4):1036–1053, 1986. doi:10.1137/0215074.

[18] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996. ISBN 1-55860-348-4.

[19] Topi Musto. Knowledge of degree bounds in local algorithms. Master’s thesis, University of Helsinki,

2011.

[20] Moni Naor. A lower bound on probabilistic algorithms for distributive ring coloring. SIAM J. Discrete

Math., 4(3):409–412, 1991. doi:10.1137/0404036.

[21] Moni Naor and Larry J. Stockmeyer. What can be computed locally? SIAM J. Comput., 24(6):1259–

1277, 1995. doi:10.1137/S0097539793254571.

[22] David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.

[23] Seth Pettie and Vijaya Ramachandran. Minimizing randomness in minimum spanning tree, parallel

connectivity, and set maxima algorithms. In Proceedings of the Thirteenth Annual ACM-SIAM Sym-

posium on Discrete Algorithms, January 6-8, 2002, San Francisco, CA, USA., pages 713–722, 2002.

acm:545381.545477.

[24] Nicola Santoro. Design and analysis of distributed algorithms, volume 56. John Wiley & Sons, 2006.

[25] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. A000788.

[26] Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity (extended

abstract). In 18th Annual Symposium on Foundations of Computer Science, Providence, Rhode Island,

USA, 31 October - 1 November 1977, pages 222–227, 1977. doi:10.1109/SFCS.1977.24.

15

http://dx.doi.org/10.1137/0215074
http://dx.doi.org/10.1137/0404036
http://dx.doi.org/10.1137/S0097539793254571
http://dl.acm.org/citation.cfm?id=545381.545477
http://oeis.org/A000788
http://dx.doi.org/10.1109/SFCS.1977.24

A Proof of lemma 1

Lemma 3 (Local average lemma). Let L be a language in LCL* with verification radius t, and A be a

minimal algorithm for L. There exists two positive constants α and β, such that on any q-sparse graph, ID

assignment, inputs, and node v, the average of the running times of the nodes at distance at most r(v)/2
from v, is at least α.r(v) − β.

Proof. From claim 4, for every k,

r(v)− 2k − 2t ≤ max
u∈S(v,k,k+2t)

r(u).

The following inequality follows:

r(v)− 2k − 2t ≤
∑

u∈S(v,k,k+2t)

r(u).

Let us sum the inequality above, for k ranging from 1 to r(v)/2− 2t. We assume without loss of generality

that t and r(v) are positive. The left-hand term is then:

r(v)/2−2t
∑

k=1

(r(v)− 2k − 2t) =
r(v)2

4
− tr(v) +

r(v)

2
− 2t ≥

r(v)2

4
− 3tr(v).

The right-hand term is:

r(v)/2−2t
∑

k=1

∑

u∈S(v,k,k+2t)

r(u) ≤ (2t+ 1) ×
∑

u∈S(v,1,r(v)/2)

r(u).

Because of q-sparsity, the number of nodes in S(v, 1, r(v)/2) is bounded by (r(v)/2).q, thus

(2t+ 1)×
∑

u∈S(v,1,r(v)/2)

r(u) ≤ (2t+ 1)
qr(v)

2|S(v, 1, r(v)/2)|

∑

u∈S(v,1,r(v)/2)

r(u).

Putting the pieces together, and simplifying the terms, we get:

r(v)2

4
− 3tr(v) ≤ 2tqr(v)

1

|S(v, 1, r(v)/2)|

∑

u∈S(v,1,r(v)/2)

r(u).

Dividing by r(v), and defining α = 1
8tq and β = 3t

2q , we get:

α.r(v) − β ≤
1

|S(v, 1, r(v)/2)|

∑

u∈S(v,1,r(v)/2)

ru

Which is the desired formula, as the right-hand term is the node-averaged complexity, and as t and q are

constants. ⊓⊔

16

	How Long It Takes for an Ordinary Node with an Ordinary ID to Output?

